import glob import argparse from PIL import Image, ImageFilter def square_size_no_padding(img): w, h = img.size new = Image.new(img.mode, (max(w, h), max(w, h)), (255, 255, 255)) if h >= w: new.paste(img, (int((max(w, h) - w) / 2), 0)) else: new.paste(img, (0, int((max(w, h) - h) / 2))) return new def square_size_padding(img): w, h = img.size padding_percentage = 0.02 length = max(w, h) padding = int(padding_percentage * length) new = Image.new(img.mode, (length + 2 * padding, length + 2 * padding), 0xFAFAFA) if h >= w: new.paste(img, (int((length + 2 * padding - w) / 2), padding)) else: new.paste(img, (padding, int((length + 2 * padding - h) / 2))) return new def drop_shadow(image, offset=(5, 5), background=0xffffff, shadow=0x444444, border=8, iterations=50): """ Add a gaussian blur drop shadow to an image. image - The image to overlay on top of the shadow. offset - Offset of the shadow from the image as an (x,y) tuple. Can be positive or negative. background - Background colour behind the image. shadow - Shadow colour (darkness). border - Width of the border around the image. This must be wide enough to account for the blurring of the shadow. iterations - Number of times to apply the filter. More iterations produce a more blurred shadow, but increase processing time. """ w, h = image.size total_width = w + abs(offset[0]) + 2 * border total_height = h + abs(offset[1]) + 2 * border back = Image.new(image.mode, (total_width, total_height), background) shadow_image = Image.new(image.mode, (w, h), shadow) shadow_left = border + max(offset[0], 0) shadow_top = border + max(offset[1], 0) back.paste(shadow_image, (shadow_left, shadow_top)) n = 0 while n < iterations: back = back.filter(ImageFilter.BLUR) n += 1 image_left = border - min(offset[0], 0) image_top = border - min(offset[1], 0) back.paste(image, (image_left, image_top)) return back if __name__ == "__main__": files = glob.glob("*") for file in files: if (file.endswith(".JPG") or file.endswith(".png")) \ and (str.find(file, "result") == -1): names = file.split(".") if len(names) != 2: continue try: im = Image.open(file) except Exception as e: print(str(e)) continue print("Processing {}".format(file)) result = square_size_padding(im) result.save("{}-result.{}".format(names[0], names[1]), quality=100)