
Low Latency Live Video Streaming over a Low-Earth-Orbit
Satellite Network with DASH

Jinwei Zhao
University of Victoria
Victoria, BC, Canada
clarkzjw@uvic.ca

Jianping Pan
University of Victoria
Victoria, BC, Canada

pan@uvic.ca

ABSTRACT
Despite Starlink’s recent rapid growth in building a global low-
earth-orbit satellite constellation and providing high-speed, low-
latency Internet services, the implications of low-latency live video
streaming over Starlink, especially given its fluctuating latency and
regular satellite handovers, are yet to be thoroughly examined. In
this paper, we conducted a thorough measurement study on the
Starlink access network across different protocol layers and multi-
ple geographical Starlink installations, including one where laser
inter-satellite links are utilized in practice. We also performed a
comprehensive latency target-based analysis of low-latency live
video streaming with three state-of-the-art adaptive bitrate (ABR)
algorithms in dash.js over Starlink.We presented a novel ABR algo-
rithm designed for low-latency live video streaming over Starlink
networkswhich leverages satellite handover patterns observed from
measurements to dynamically adjust video bitrate and playback
speed. Performance evaluations of the proposed algorithm were
conducted using both a purpose-built network emulation testbed
and actual Starlink networks.The results demonstrate that the pro-
posed algorithm effectively utilizes the predictable Starlink satel-
lite handover pattern and network characteristics. This effectively
delivers a better quality of experience for low-latency live video
streaming, characterized by high average video playback bitrates,
minimal rebuffering events, and reduced visual quality fluctuation.

CCS CONCEPTS
• Information systems→Multimedia streaming; •Networks
→ Network performance evaluation.

KEYWORDS
DASH, Starlink, Low Latency Live Streaming
ACM Reference Format:
Jinwei Zhao and Jianping Pan. 2018. Low Latency Live Video Streaming
over a Low-Earth-Orbit Satellite Network with DASH. In Proceedings of
(MMSys’24).ACM,NewYork, NY, USA, 11 pages. https://doi.org/XXXXXXX.
XXXXXXX

1 INTRODUCTION
By integrating the distinct capabilities of space, aerial, and terres-
trial networks, Space-Air-Ground Integrated Networks (SAGINs)
are expected to revolutionize future Internet connectivity through
enhanced flexibility and expansible network coverage. In addition

MMSys’24, April 15–18, 2024, Bari, Italy
© 2018 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of
(MMSys’24), https://doi.org/XXXXXXX.XXXXXXX.

to supporting the growing traffic of terrestrial networks, SAGINs
will broaden Internet access to remote regions, including rural ar-
eas, oceans, and mountainous terrains [11]. Starlink, a division
of SpaceX [17], stands out as a pivotal player in offering Inter-
net service through a constellation of low-earth-orbit (LEO) satel-
lites. These mass-produced small satellites bridge the communica-
tion between Starlink user terminals (UTs) and ground stations
(GSs).While the concept of satellite Internet is not novel, Starlink’s
strategy in building a large LEO satellite constellation narrows the
bandwidth and latency gap with conventional terrestrial networks.
Specifically, SpaceX deploys Starlink satellites at an approximate
altitude of 550 km, in contrast to traditional satellite communica-
tion networks that rely on either geosynchronous equatorial or-
bit (GEO) or medium-earth-orbit (MEO) satellites, which are po-
sitioned at higher altitudes and have wider coverage but suffers
from higher latency and limited capacity. As of June 2023, SpaceX
has deployed more than 4,600 LEO satellites and attained global
coverage. Nevertheless, SpaceX’s constellation ambition extends
to launching up to 42,000 LEO satellites and eventually construct-
ing multiple orbital shells [16].

The recent rapid growth and development of Starlink has at-
tracted significant attention from both the industry and research
community [10]. Due to the characteristics of LEO satellite net-
works, UTs utilize phased array antennas to track themoving satel-
lites and perform frequent handovers between satellites to main-
tain network connectivity. Tanveer et al. [21] observed that Star-
link employs a global controller for managing terminal-to-satellite
scheduling. Notably, Starlink satellite handover happens every 15
seconds, specifically, at the 12th, 27th, 42nd, and 57th (12-27-42-57)
second past every minute, synchronized globally. Pan et al. [14]
conducted an extensive measurement study on the Starlink satel-
lite access network, gateway, point-of-presence (PoP) architectures
and the global backbone topology. It revealed that the round-trip-
time (RTT) from the UT to the GS experiences significant fluctu-
ations and is higher than that of conventional terrestrial Internet
access via fiber optics, digital subscriber line (DSL), or cable mo-
dem.

Regarding the frequent satellite handover events and fluctuat-
ing latency, existing research indicates that Starlink can support
a wide range of multimedia services with high-quality assurance,
including video-on-demand (VoD) and live video streaming, given
adequate playback buffers are configured properly. However, the
performance remains insufficient formore demanding applications
including bidirectional video streaming such as interactive video
conferencing, immersive AR/VR/XR applications, 360-degree and
volumetric video streaming and low-latency live (LLL) video stream-
ing. For VoD services over Starlink, the end-to-end performance

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


MMSys’24, April 15–18, 2024, Bari, Italy Jinwei Zhao and Jianping Pan

is on par with conventional terrestrial networks [23]. Despite fre-
quent handover events and occasional outages of Starlink, the large
playback buffer employed in VoD players is usually adequate to
compensate for these interruptions, thereby ensuring a smooth
viewing experience for end-users. However, for live video stream-
ing, the necessity to meet latency targets introduces additional
challenges for service providers endeavoring to ensure a low-latency
experience, particularly within Starlink’s dynamic network envi-
ronment. Various application scenarios, such as live sports events,
cloud gaming, and interactive live broadcasting, require distinct la-
tency targets. Nowadays, typical terrestrial broadcasting (DVB-T)
latencies range from 6 - 8 seconds. Given the widespread adoption
of Starlink globally, the demand for LLL video delivery over satel-
lite networks is undeniably significant. O’Hanlon et al. [13] con-
ducted a comprehensive analysis of the low-latency performance
of three adaptive bitrate (ABR) algorithms in dash.js, namely Dy-
namic, L2A-LL, and LoL+, considering a variety of latency targets
(3, 5.5, 8, and 15 seconds) and configuration options. Nonetheless, it
remains unknown how the fluctuating latency and frequent satel-
lite handover events affect the performance of LLL video streaming
ABR algorithms in dash.js.

In this paper, we conducted a thorough measurement of the
Starlink access network across different protocol layers and geo-
graphical Starlink installations, including one where laser inter-
satellite links (ISLs) are utilized in practice. We performed a la-
tency target-based analysis of LLL video streaming over Starlink
networks. We proposed a novel LLL video streaming ABR algo-
rithm specifically designed for streaming over Starlink satellite net-
works. It leverages the satellite handover patterns observed from
measurements to dynamically adjust the video bitrate and play-
back speed, thereby ensuring a seamless viewing experience with
high average video playback quality, minimal rebuffering events
and reduced visual quality fluctuation. The main contributions of
this paper are therefore four-fold and can be summarized as fol-
lows:

• Assessed the latency and throughput of the Starlink access net-
work across different protocol layers and geographical locations,
taking into account scenarios both with and without ISLs.

• Conducted a latency target-based measurement and analysis of
three state-of-the-art LLL video streaming ABR algorithms in
dash.js over Starlink networks.

• Modelled the LLL video streaming with contextual multi-armed
bandit (CMAB) algorithms and proposed a novel ABR algorithm,
improving the QoE of LLL video streaming over Starlink net-
works.

• Implemented a prototype of the proposed algorithmwith dash.js
and evaluated its performance using both a purpose-built net-
work emulation testbed and actual Starlink networks.

The remainder of the paper is organized as follows. Section 2
introduces some related works in LLL video streaming ABR al-
gorithms and Starlink measurement studies. Section 3 details the
testbed setup and outlines the results of our measurements. Sec-
tion 4 articulates the problem of LLL video streaming using CMAB
algorithms and presents the design of our proposed algorithm. Sec-
tion 5 evaluates the performance of the proposed algorithm in both
network emulation settings and real Starlink networks. Section 6

discusses the open research challenges and finally, Section 7 con-
cludes the paper, highlighting potential improvement and future
work.

2 RELATEDWORKS
In this section, we provide a brief overview of the related works
involved with LLL video streaming in DASH and the measurement
of Starlink networks.

2.1 LLL Video Streaming in DASH
Over the past decade, numerous ABR algorithms have been pro-
posed to improve the QoE of video streaming in DASH. In this
section, our concentration is on three LLL video streaming ABR
algorithms available in the dash.js [5] reference player, namely Dy-
namic, L2A-LL, and LoL+.

The default Dynamic [18] algorithm in dash.js is a hybrid ABR
algorithm consisting of throughput-based rule and buffer-based
BOLA algorithm [19]. Karagkioules et al. [9] proposed Learn2Adapt-
LowLatency (L2A-LL), which uses online convex optimization to
provide robust video bitrate adaptation strategies without relying
on specific parameter tuning, channelmodel assumptions, through-
put estimation or application-specific adjustments. Bentaleb et al. [2]
introduced LoL+, a learning-based ABR algorithm that employs a
self-organizing map (SOM) to adapt the bitrate at every segment
download boundary. LoL+ contains four different modules, namely
a playback speed control module that combines the current latency
and buffer level to control the playback speed; a throughput mea-
surement module that accurately provides throughput estimation
based on CMAF chunks; a QoE evaluation module that computes
the QoE considering five metrics: selected bitrate, number of bi-
trate switches, rebuffering duration, latency and playback speed;
and a weight selection module that implements a dynamic weight
assignment algorithm for the SOM model features.

O’Hanlon et al. [13] conducted a latency target-based analysis of
these three ABR algorithms concerning a range of latency targets
(3, 5.5, 8, and 15 seconds) and configuration options for the LLL
video streaming performance. The Dynamic algorithm performs
the best in terms of low rebuffering duration, with the least num-
ber of stalls and the shortest overall rebuffering time. In terms of
live latency, the Dynamic algorithm also provides the smallest de-
viation from the latency target in all the scenarios evaluated and
provides themost stable but lower video bitrate quality, whilst L2A-
LL and LoL+ can reach a higher video quality level. They further
demonstrated the impact of the FastSwitching option in dash.js.
When enabled, this option replaces low-bitrate video segments in
the playback buffer with high-bitrate segments during a quality in-
crease, rather than appending them directly to the end of the cur-
rent playback buffer. However, the FastSwitching option brings
a significant number of re-requests that consume more bandwidth
but do not generally increase the QoE. Thus, the option is recom-
mended to be disabled in LLL video streaming.



Low Latency Live Video Streaming over a Low-Earth-Orbit Satellite Network with DASH MMSys’24, April 15–18, 2024, Bari, Italy

Figure 1: Starlink DASH testbed architecture

2.2 Starlink
Since the launch of Starlink’s beta testing in 2020, it has attracted
considerable research interest from both the industrial and aca-
demic sectors. Research topics span from access network measure-
ments [14, 21, 23] to physical layer signal structure analysis [3]
and routing protocol design [22], among others. In this section, we
focused on the evaluation of Starlink access networks.

Zhao et al. [23] conducted a systematic measurement on real-
time multimedia services over Starlink, including VoD (YouTube),
live-streaming (Twitch) and video conferencing service (Zoom).The
Starlink network typically delivers satisfactory performance for
multimedia services. However, factors like extreme weather, satel-
lite handover events, and changes in packet routing paths can im-
pact its performance. VoD services remain largely unaffected due
to their substantial playback buffers, which can compensate for
Starlink’s occasional short-time outages and frequent satellite han-
dover events. In contrast, interactive applications such as video
conferencing and live video streaming, face more pronounced per-
formance challenges. Tanveer et al. [21] noted a consistent pattern
in Starlink’s satellite handover events occurring every 15 seconds.
Specifically, these events manifest in the latency characteristics at
the 12th, 27th, 42nd, and 57th seconds of each minute. This pattern
suggests that SpaceX utilized a globally time-synchronized sched-
uler to manage the access network between the UTs and satellites.
Pan et al. [14] provided comprehensive insights into the access,
gateway, PoP, and backbone network architectures of Starlink, il-
lustrating the findings with detailed network topology diagrams,
derived from collaborative measurements across the world.

3 MEASUREMENT
In this section, we first present the testbed setup and measurement
results of Starlink access networks. Our measurements were con-
ducted across different protocol layers and multiple geographical
Starlink installations. We then outline the approach behind our

latency target-based analysis of LLL video streaming over Star-
link networks. The subsequent measurement results, in conjunc-
tion with the performance evaluation of the proposed algorithm,
are presented in Section 5.

3.1 Setup
The architecture of our Starlink measurement testbed is shown in
Figure 1. For each Starlink installation, we deployed a virtual ma-
chine as the media server in the nearest Google Cloud Platform
(GCP) availability zone. For example, for the Starlink installation
in the Pacific Northwest, the nearest Starlink GS and PoP are lo-
cated in Seattle, USA. Tominimize additional terrestrial network la-
tency, we deployed the media server in GCP’s us-west1-a availabil-
ity zone, physically located in Oregon, USA. Our measurements
indicate that a single hop exists between the Starlink Seattle PoP
and the GCP gateway in this availability zone, with a latency be-
low 10 milliseconds. We also have access to a Starlink installation
on an island in the western Indian Ocean, proximate to the eastern
coast of Africa. As of July 2023, the only Starlink GS and PoP in
Africa are physically located in Lagos, Nigeria [12], located on the
western coast of the continent. Considering the absence of Star-
link GSs within a 5,000 km radius of this Starlink installation, we
utilized mtr and traceroute to trace the packet from this Starlink
UT to the Internet.The results derived from the reverseDNS resolu-
tion using nslookup, (customer.lgosnga1.pop.starlinkisp.net),
revealed that packets are routed via the Starlink Lagos PoP in Nige-
ria. Our inference is that the packets are relayed and transmit-
ted through multiple laser inter-satellite links, commonly referred
to as ISLs. When ISL is in use, packets travel through multiple
satellites before being transmitted to the GS as shown in Figure 1.
We deployed the media server for this region in GCP’s europe-
southwest1-a availability zone, physically located in Madrid, Spain,
where the Starlink Madrid PoP is interconnected with Starlink La-
gos PoP through Starlink’s terrestrial backbone infrastructure [14].



MMSys’24, April 15–18, 2024, Bari, Italy Jinwei Zhao and Jianping Pan

Table 1: Starlink access network latency (ms) to the GS

Starlink Installations Min Median Average 𝜎
Without ISL 16.7 42.8 47.5 20.9
With ISL 59.1 109.0 119.8 43.7

0 200 400 600
RTT (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

With ISL
Without ISL

Figure 2: CDF of the RTT to the GS

0 20 40 60
Seconds

45

50

55

60

RT
T 
(m

s)

(a) Avg. RTT to GS without ISL

0 20 40 60
Seconds

110

120

130

RT
T 
(m

s)

(b) Avg. RTT to GS with ISL

Figure 3: Average RTT to GS at every second

For each Starlink installation, a mini PC is directly connected to
the Starlink user router via an Ethernet cable. Network measure-
ment scripts and the LLL video streaming stack are deployed on
the mini PC. The LLL video streaming stack consists of a modified
dash.js player, a backend server, a MongoDB database and an anal-
ysis client. The modified dash.js player sends the playback metrics
to the backend server through REST APIs, which are then stored
in the MongoDB database. The analysis client queries the Mon-
goDB database after playback sessions and generates correspond-
ing figures. On each media server, we deployed livesim2 [6], a
DASH live source simulator implemented in Go by the DASH In-
dustry Forum, which takes segmented DASH source videos as the
input assets, and produces a wall-clock (UTC) synchronized linear
stream of video segments. By looping the input VoD DASH assets
and dynamically adjusting the timestamps, a perpetual “live” video
stream is made available to the clients. Nginx is installed as the
frontend web server to serve the MPD files and the corresponding
“live” video streams.

3.2 Measuring Starlink Access Network
Pan et al. [14] measured the structure of Starlink access networks.
Their findings indicate that, from a user’s perspective, the GS is al-
ways accessible at a carrier-grad NAT (CGNAT) address 100.64.0.1.
This applies to regular Starlink subscribers, except those on the
business or priority subscription plan with the public address op-
tion. Subscribers of the latter are allocated a static public IPv4 ad-
dress bounded to their Starlink user routers. The IPv4 network ad-
dress translation (NAT) happens at the nearest GS for regular Star-
link subscribers.

Our first measurement is to evaluate the latency performance
of Starlink access networks. We started with measuring the RTT
between clients and the nearest GS using ping. The interval for the
ping command is set at 10 milliseconds, with a total continuous
duration of 60 minutes. A summary of the Starlink access network
latency to the GS is shown in Table 1.

For the Starlink installation without ISL, the overall access la-
tency can easily be maintained at around 50 milliseconds, with
the minimal RTT being 16.7 milliseconds, the median RTT being
42.8 milliseconds and the average RTT being 47.5 milliseconds. For
the Starlink installation with ISL, the overall access latency fluctu-
ated more than the one without ISL, with the minimal RTT being
59.1 milliseconds, the median RTT being 109.0 milliseconds, the
average RTT being 119.8 milliseconds and a higher standard de-
viation 𝜎=43.7 milliseconds than 𝜎=20.9 milliseconds without ISL.
The CDF of both access latency distributions is shown in Figure 2.

We calculated the average RTT to the nearest GS at every sec-
ond for both Starlink installations, as shown in Figure 3. It shows
the comparison of averaged RTT to the nearest GS for two geo-
graphical Starlink installations (western Indian Ocean and Pacific
Northwest) with and without ISL utilized. It revealed an obvious
pattern that at 12-27-42-57 seconds of every minute, the average
RTT between Starlink UTs and their corresponding GSs spikes,
which indicates that satellite handover events happen at synchro-
nized seconds globally at different geographical locations. This ob-
servation is consistent with the findings in [21]. However, our ob-
servations in Figure 3(a) and Figure 3(b) indicate that the potential
impact of satellite handover events is more pronounced on the Star-
link installation that did not utilize ISL during our measurement.

To gain deeper insights into how satellite handover events influ-
ence the end-to-end (E2E) performance of different applications,
we carried out time-synchronized measurements of latency and
throughput, as indicated in Figure 4. E2E latency and throughput
are measured with IRTT and iPerf3 respectively. We deployed
IRTT and iPerf3 daemon programs on the media servers as illus-
trated in Section 3.1 and Figure 1. All the media servers and clients
are configured with NTP time synchronization using chrony and
Google Public NTP service1, such that IRTT can provide accurate
one-way delay (OWD) measurements. IRTT can also provide la-
tencymeasurementwith higher time resolution than ping, by keep
sending UDP packets on a fixed time interval regardless of whether
replies are received. By utilizing UDP instead of ICMP, it can also
avoid the potential ICMP deprioritization on some network devices
and provide more realistic measurement results close to real-world
applications. In our measurements, the IRTT request interval is set

1https://developers.google.com/time



Low Latency Live Video Streaming over a Low-Earth-Orbit Satellite Network with DASH MMSys’24, April 15–18, 2024, Bari, Italy

0 20 40 60 80 100
Time (second)

0

100

200

300

400

500

RT
T 
(m

s)

With ISL
Without ISL

(a) E2E Latency

0 20 40 60 80 100
Time (second)

0

100

200

300

La
te
nc

y 
(m

s)

With ISL
Without ISL

(b) Uplink OWD

0 20 40 60 80 100
Time (second)

0

50

100

150

200

La
te
nc

y 
(m

s)

With ISL
Without ISL

(c) Downlink OWD

0 20 40 60 80 100
Time (second)

0

50

100

150

200

250

Th
ro
ug

hp
ut
 (M

bp
s)

With ISL
Without ISL

(d) DownlinkThroughput

Figure 4: Time synchronized latency and throughput mea-
surements

to 10 milliseconds, consistent with the ICMP ping experiments.
To measure the throughput, we utilized iPerf3 and set the report
interval to 100 milliseconds, which is the minimal iPerf3 report
interval. In this paper, our primary focus was on evaluating the
downlink throughput performance from the media server to the

Table 2: Bitrate ladder of the LLL video dataset

Resolution Frame rate (fps) Bitrate (Kbps)
1920x1080 50 6000
1920x1080 25 5100
1920x1080 50 4900
1024x576 25 1500
1024x576 25 1200
768x432 25 900
512x288 25 450
480x270 12.5 300

video streaming clients, aligning with typical video streaming sce-
narios. However, a brief discussion on the uplink performance for
live broadcasting scenarios is provided in Section 6.1. TCP was
used for all the iPerf3 throughput measurements and the TCP
congestion control algorithm used is Cubic, which is the default
congestion control algorithm in the Ubuntu 22.04 operating sys-
tem we used.

Figure 4 shows a 2-minute window of the time-synchronized la-
tency and throughput measurements. There is a notable variance
in latency patterns across each 15-second interval. At the bound-
aries of each timeslot, both the uplink and downlink OWD ex-
hibit surges, aligning with the satellite handover events. Regard-
ing OWD, the downlink OWD exhibits a more pronounced “strip
band” pattern compared to the uplink OWD, especially for Star-
link installations without ISL in Figure 4(c). This distinction likely
arises because downlink access is allocation-based, designating spe-
cific timeslots in a media access frame for a particular UT. Con-
versely, the uplink operates on either a contention-based system
or a poll-randomize-grant mechanism [8]. Figure 4(d) shows that
while the RTT might stay relatively stable between different 15-
second timeslots as the satellite handover events happen, the client
and server have to go through the slow start pattern in each times-
lot because of RTT timeout or packet loss, which can significantly
impact the throughput performance. It is important to note that
the utilization of ISL does not directly impact downlink through-
put. Instead, it is influenced by Starlink’s capacity limitations in
specific regions.

3.3 Measuring LLL Video Streaming
Our measurement on LLL video streaming over Starlink networks
is based on dash.js v4.7.1, which was released in June 2023. Three
ABR algorithms and four different latency targets are evaluated,
namely Dynamic, LoL+ and L2A-LL and the latency targets range
from 3 seconds to 6 seconds. The video dataset used in our mea-
surements is obtained from the CTA WAVE Test Project [4]. The
bitrate ladder is shown in Table 2, which contains 8 representations
with different resolutions and frame rates, and the target H.264 en-
coding bitrate ranges from 300 Kbps to 6000 Kbps. The video is
segmented into 2-second aligned video segments. We played back
the “live” video stream produced by livesim2 for 5 minutes in
each round of measurement and repeated the same measurement



MMSys’24, April 15–18, 2024, Bari, Italy Jinwei Zhao and Jianping Pan

Figure 5: Starlink DASH emulation testbed architecture

10 times for each latency target and ABR algorithm. The follow-
ing metrics are collected every 100 milliseconds on our modified
dash.js player during playback,

• Average playback bitrate
• Average live latency
• Rebuffering time (%)
• No. of bitrate switches

and they are periodically sent to the backend server and then stored
in MongoDB databases for the analysis client to evaluate the per-
formance of LLL video streaming ABR algorithms.

In addition to evaluating the performance of LLL video stream-
ing ABR algorithms in real Starlink networks, we also conducted
measurements in emulated network environments. The architec-
ture of the purpose-built emulation testbed is similar to the real
Starlink testbed with minor modifications, which is shown in Fig-
ure 5. All the components in Figure 5 are deployed on a single ma-
chine using Docker containers and orchestrated by Docker Com-
pose. A “Traffic Shaper” container is added to the emulation testbed
between the dash.js player and the frontend Nginx web server to
add artificial network latency following the Starlink satellite han-
dover pattern and the measured latency performance. The moti-
vation behind network emulation is to provide a repeatable envi-
ronment for performance evaluation under extreme network con-
ditions. While Starlink indeed performs satellite handovers every
15 seconds as shown in Section 3.2, we also observed that in some
cases, the latency variation is not significant enough to affect the
performance of LLL video streaming. With network emulation, we
can add periodic and artificial but still realistic packet losses and
latency variations according to the Starlink satellite handover pat-
tern at 12-27-42-57 seconds every minute. In our emulation, we
employed the Linux network utility tc and netem to introduce arti-
ficial delay and packet loss. Specifically, this was done one second
before and after 12-27-42-57 seconds every minute. That is, dur-
ing the intervals of (11, 12, 13), (26, 27, 28), (41, 42, 43), and (56,
57, 58) seconds every minute, artificial network delays and packet
loss were added in the links between dash.js player and the fron-
tend Nginx web server. The presumption of adding extra seconds
is even though the actual Starlink satellite handover events at the
physical layer take roughly 100 milliseconds, they might introduce
extended disturbances to upper-layer applications. For compari-
son, we also incorporated a control group utilizing terrestrial fiber

Table 3: Summary of key notations

Notation Definition
𝐾 Number of arms
𝑇 Total number of rounds
𝑎(𝑡) Arm selected by agent at round 𝑡
𝑏 (𝑡) Context vector revealed to agent at round 𝑡
𝜇𝑘 Distribution parameter for arm 𝑘
𝑞 1st round of the current 15-second timeslot

H𝑡−1
𝑞 History beginning from 𝑞 up to round 𝑡 − 1

𝑎∗ (𝑡) Optimal arm at round 𝑡
𝑟 (𝑖) Reward for video segment 𝑖
𝐶 Total number of rebuffering events
𝐶𝑘 Total number of rebuffering events at bitrate 𝑘
𝑡 𝑗 Rebuffering time for event 𝑗
𝑡𝑘𝑗 Rebuffering time for event 𝑗 at bitrate 𝑘
B(𝑖) Video bitrate of segment 𝑖
Bmax Highest video bitrate available in the MPD file
R(𝑡) Playback speed at 𝑡
X(𝑡) Estimated network throughput at 𝑡
LN (𝑡) Measured network latency at 𝑡
LLtarget Latency target for the playback session

LLcurrent (𝑖) Playback latency when downloading segment 𝑖
QoEP1203 (𝑖) ITU-T P.1203 Mode 0 QoE score for segment 𝑖

QoE(𝑖) Final QoE for segment 𝑖

optics Internet access. The measurement results are shown in Fig-
ure 6 to Figure 8, along with a detailed performance evaluation and
comparison with the proposed algorithm in this paper presented
in Section 5.

4 PROBLEM FORMULATION
In this section, we first present the problem formulation of LLL
video streaming usingCMAB algorithms.Then, a novel QoE-driven
reward function and catch-up policy are proposed to improve the
QoE of LLL video streaming under Starlink networks. The key no-
tations used in this paper are summarized in Table 3.

4.1 System Model
The problem setting of a general CMAB algorithm can be defined
as in [1]. In this paper, we model the LLL video streaming scenario
with CMAB algorithms as follows.

The video bitrate adaptation problem in live video streaming
can be formulated as an online decision-making process.The video
player, referred to as an agent, is presented with𝐾 different bitrate
levels to choose from in each of𝑇 rounds. The total video playback
time𝑇 could be infinite.The𝐾 video bitrate levels are referred to as
𝐾 arms. The decision on which bitrate should be selected for play-
back is analogous to choosing an arm to pull by the agent. Before
the agent pulls an arm in each round, a context vector 𝑏 (𝑡) ∈ R𝑑 is
presented, which contains the context information when the cur-
rent round happens. The context information can include metrics
such as the current network latency, current video playback speed,
estimated network throughput, etc. In this paper, we define the



Low Latency Live Video Streaming over a Low-Earth-Orbit Satellite Network with DASH MMSys’24, April 15–18, 2024, Bari, Italy

context vector 𝑏 (𝑡) as follows,
𝑏 (𝑡) = [LN (𝑡), R(𝑡),X(𝑡)] (1)

where at time 𝑡 , LN (𝑡) is the measured network latency to the me-
dia server, R(𝑡) is the current playback speed, and X(𝑡) is the esti-
mated network throughput, respectively.

The agent chooses an arm that is anticipated to yield the highest
expected reward in the current round. That is, the video bitrate se-
lection should yield the highest expected QoE in the current round,
without causing playback interruptions or rebuffering events. In
each round, only the reward of the chosen arm is revealed to the
agent, leaving the rewards of the unselected arms undisclosed.

A history H𝑡−1 containing all the previous rewards of the se-
lected arms and their respective contexts up to round 𝑡 − 1 can
be compiled by the agent before round 𝑡 . In this paper, we only
consider the history H𝑡−1

𝑞 during the current 15-second timeslot
beginning from round 𝑞,

H𝑡−1
𝑞 =

{
𝑎(𝑠), 𝑟𝑎 (𝑠 ) (𝑠), 𝑏 (𝑠), 𝑠 = 𝑞, . . . , 𝑡 − 1

}
(2)

where 𝑎(𝑠) denotes the arm played at round 𝑠 and 𝑟𝑎 (𝑠 ) (𝑠) is the
reward for arm 𝑎(𝑠) at round 𝑠 , and 𝑞 is the first round during the
current 15-second timeslot.

Given 𝑏 (𝑡), the reward for arm 𝑘 at round 𝑡 is derived from an
unknown distribution with mean 𝑏 (𝑡)𝑇 𝜇𝑘 , where 𝜇𝑘 ∈ R𝑑 is a con-
stant parameter unknown to the agent. 𝑏 (𝑡)𝑇 denotes the matrix
transpose of 𝑏 (𝑡). The expected reward of 𝑟𝑘 (𝑡) for each arm 𝑘
given 𝑏 (𝑡) and H𝑡−1

𝑞 can be defined as,

E
[
𝑟𝑘 (𝑡) | 𝑏 (𝑡),H𝑡−1

𝑞

]
= 𝑏 (𝑡)𝑇 𝜇𝑘 . (3)

In a CMAB scenario, an agent employing an online learning al-
gorithm must decide which arm 𝑎(𝑡) to pull at each round 𝑡 , con-
sidering both the history H𝑡−1

𝑞 and the context vector 𝑏 (𝑡) of the
current round made available to the agent.

Define 𝑎∗ (𝑡) as the optimal arm at time 𝑡 that provides the max-
imum expected reward, formulated as 𝑎∗ (𝑡) = argmax𝑘 𝑏 (𝑡)𝑇 𝜇𝑘 .
Let Δ𝑘 (𝑡) represent the difference in reward between the optimal
arm 𝑎∗ (𝑡) and arm 𝑘 at time 𝑡 , i.e.,

Δ𝑘 (𝑡) = 𝑏 (𝑡)𝑇 𝜇𝑎∗ (𝑡 ) − 𝑏 (𝑡)𝑇 𝜇𝑘 (4)
Then, the regret at time 𝑡 is defined as

regret(𝑡) = Δ𝑎 (𝑡 ) (𝑡) (5)
It is worth noting that the CMAB problem setting presented

here deviates from the one outlined in [1]. In our scenario, the as-
sumption is that each arm 𝑘 is revealed with the identical context
vector 𝑏 (𝑡). Moreover, each arm follows an unknown yet unique
distribution defined by its respective 𝜇𝑘 . We also only consider
the historyH𝑡−1

𝑞 during the current 15-second timeslot beginning
from round 𝑞, because of the unique and fluctuating latency pat-
tern in each timeslot as shown in Figure 4.

4.2 Reward Function Design
We employed ITU-T P.1203 [15] for the QoE-driven reward func-
tion. Specifically, we used the ITU-T P.1203 Mode 0, which derives
from video stream metadata and yields an overall QoE score rep-
resented as a Mean Opinion Score (MOS) for video segments. We
took the O.46 score from ITU-T P.1203 model outputs, which is a

single media session quality score, on a 1–5 quality scale in real
numbers. We develop a QoE-driven reward function with the pri-
mary objective of reducing the live latency, minimizing rebuffering
events and increasing playback bitrate,

QoE(𝑖) = QoEP1203 (𝑖) ∗
LLtarget

LLcurrent (𝑖)
∗ B(𝑖)
Bmax

−
∑𝐶𝑘

𝑗=1 𝑡
𝑘
𝑗∑𝐶

𝑗=1 𝑡 𝑗
(6)

where QoEP1203 (𝑖) represents the MOS score for video segment 𝑖
calculated by ITU-T P.1203 Mode 0, LLtarget represents the latency
target in this playback session, LLcurrent (𝑖) represents the current
live latency when downloading video segment 𝑖 , 𝐶 represents the
total number of rebuffering events, 𝐶𝑘 represents the number of
rebuffering events happens at bitrate 𝑘 , 𝑡 𝑗 represents the duration
of rebuffering event 𝑗 , 𝑡𝑘𝑗 represents the duration of rebuffering
event 𝑗 happens at bitrate 𝑘 , B(𝑖) is the video bitrate for segment
𝑖 , and Bmax is the highest video bitrate available in the MPD file.

The agent pulls an arm before downloading each video segment
𝑖 , and the corresponding reward 𝑟 (𝑖) for video segment 𝑖 obtained
is defined as,

𝑟 (𝑖) = QoE(𝑖) (7)

The objective of the agent is to pull the best arm which yields the
highest expected reward in each round for video segment 𝑖 .

4.3 Catch-up Policy
A similar playback speed controlmodule as in LoL+ [2] is employed
in the proposed algorithm. The main goal of our catch-up policy
and playback speed control module is to avoid potential playback
interruptions during satellite handover periods. Although the ac-
tual satellite handover at the physical layer only takes around 100
milliseconds, it could bring a prolonged impact on upper-layer ap-
plications. Thus, we define our playback speed control module as
follows,
• The current buffer level is below the safe threshold, or it is cur-

rently within the satellite handover period: slow down the play-
back speed below 1.0.

• The current buffer level is sufficient, and it is not within the satel-
lite handover period:
– The live latency is close to the latency target (𝜖 = ±2%): main-

tain playback speed at 1.0.
– The current live latency is lower than the latency target: slow

down playback speed.
– Thecurrent live latency is higher than the latency target: speed

up playback speed.
The satellite handover period is defined using the same motiva-

tion as in Section 3.3. The intervals of (11, 12, 13), (26, 27, 28), (41,
42, 43), and (56, 57, 58) seconds every minute, are considered as the
satellite handover periods.

5 EVALUATION
We evaluated the performance of the proposed algorithm and com-
pared it with the other three LLL video streaming ABR algorithms
both in network emulation settings and real Starlink networks.The
performance evaluation on Starlink networks was only conducted



MMSys’24, April 15–18, 2024, Bari, Italy Jinwei Zhao and Jianping Pan

3 4 5 6
Latency Target (seconds)

0

1000

2000

3000

4000

5000

6000

Av
er
ag

e 
Bi
tra

te
 (K

bp
s)

L2A-LL
Dynamic
LoL+
CMAB

(a) Average bitrate: emulation

3 4 5 6
Latency Target (seconds)

0

1000

2000

3000

4000

5000

6000

Av
er
ag

e 
Bi
tra

te
 (K

bp
s)

L2A-LL
Dynamic
LoL+
CMAB

(b) Average bitrate: Starlink

3 4 5 6
Latency Target (seconds)

0

1000

2000

3000

4000

5000

6000

Av
er
ag

e 
Bi
tra

te
 (K

bp
s)

L2A-LL
Dynamic
LoL+

(c) Average bitrate: terrestrial

3 4 5 6
Latency Target (seconds)

3

4

5

6

7

8

Av
er

ag
e 

Liv
e 

La
te

nc
y 

(s
ec

on
ds

)

L2A-LL
Dynamic
LoL+
CMAB
Expected

(d) Average live latency: emulation

3 4 5 6
Latency Target (seconds)

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

Av
er

ag
e 

Liv
e 

La
te

nc
y 

(s
ec

on
ds

) L2A-LL
Dynamic
LoL+
CMAB
Expected

(e) Average live latency: Starlink

3 4 5 6
Latency Target (seconds)

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Av
er
ag

e 
Liv

e 
La
te
nc
y 
(s
ec
on

ds
) L2A-LL

Dynamic
LoL+
Expected

(f) Average live latency: terrestrial

3 4 5 6
Latency Target (seconds)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Re
bu

ffe
rin

g 
Ti
m
e 
(%

)

L2A-LL
Dynamic
LoL+
CMAB

(g) Rebuffering time (%): emulation

3 4 5 6
Latency Target (seconds)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Re
bu

ffe
rin

g 
Ti
m
e 
(%

)

L2A-LL
Dynamic
LoL+
CMAB

(h) Rebuffering time (%): Starlink

3 4 5 6
Latency Target (seconds)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Re
bu

ffe
rin

g 
Ti

m
e 

(%
)

L2A-LL
Dynamic
LoL+

(i) Rebuffering time (%): terrestrial

3 4 5 6
Latency Target (seconds)

0

10

20

30

40

50

60

70

Nu
m
be
r o

f B
itr
at
e 
Sw

itc
he
s

L2A-LL
Dynamic
LoL+
CMAB

(j) No. of bitrate switches: emulation

3 4 5 6
Latency Target (seconds)

0

20

40

60

80

100

120

140

Nu
m
be
r o

f B
itr
at
e 
Sw

itc
he
s

L2A-LL
Dynamic
LoL+
CMAB

(k) No. of bitrate switches: Starlink

3 4 5 6
Latency Target (seconds)

0.0

0.5

1.0

1.5

2.0

Nu
m

be
r o

f B
itr

at
e 

Sw
itc

he
s

L2A-LL
Dynamic
LoL+

(l) No. of bitrate switches: terrestrial

Figure 6: The measurement and performance evaluation

on the Starlink installation without ISL being utilized. The imple-
mentation of this paper is available on GitHub2

We implemented our CMAB-based ABR algorithm on dash.js
v4.7.1 and built an end-to-end evaluation prototype. To solve the
online learning problem with CMAB algorithms, MABWiser [20]
which provides fast prototyping with various CMAB algorithms is

2The URL is anonymized for double-blind review.

chosen in our implementation. While other CMAB algorithms are
available, in this paper, our implementation chose Linear Thomp-
son Sampling (LinTS) [1] as our solution. MABWiser is originally im-
plemented in Python. To integrate it with dash.js reference player
implemented in JavaScript and based on Media Source Extensions
(MSE), we utilized Pyodide [7], which is a WebAssembly-based
Python runtime for browsers. We implemented the core CMAB
algorithm for bitrate adaptation and QoE calculation in Python



Low Latency Live Video Streaming over a Low-Earth-Orbit Satellite Network with DASH MMSys’24, April 15–18, 2024, Bari, Italy

3 4 5 6
Latency Target (seconds)

250
500
750

1000
1250
1500
1750
2000

Bi
tra

te
 S
ta
nd
ar
d 
De

vi
at
io
n 
(K
bp
s)

L2A-LL
Dynamic
LoL+
CMAB

(a) Emulation

3 4 5 6
Latency Target (seconds)

0

200

400

600

800

1000

1200

1400

Bi
tra

te
 S
ta
nd
ar
d 
De

vi
at
io
n 
(K
bp
s) L2A-LL

Dynamic
LoL+
CMAB

(b) Starlink

Figure 7: Bitrate standard deviation

07
:35

:30

07
:35

:40

07
:35

:50

07
:36

:00

07
:36

:10

07
:36

:20

07
:36

:30

07
:36

:40

Time

1.000

1.025

1.050

1.075

1.100

1.125

1.150

Pl
ay

ba
ck
 sp

ee
d

(a) Playback speed

07
:35

:30

07
:35

:40

07
:35

:50

07
:36

:00

07
:36

:10

07
:36

:20

07
:36

:30

07
:36

:40

Time

3.0

3.1

3.2

3.3

3.4

3.5

3.6

Liv
e 
la
te
nc

y 
(s
ec

on
d)

(b) Live latency

Figure 8: Playback speed and live latency during one playback session

and interacted with dash.js through Pyodide APIs. We acknowl-
edge that implementing our proposed algorithm in dash.js with
WebAssembly-based Python is slower than a native JavaScript im-
plementation, with our measurement, however, the performance
overhead and the time cost to solve the CMAB problem in each
round is below 100 milliseconds, which is negligible in our sce-
nario. Similar to the latency target-based measurements in [13],
we disabled the FastSwitching option in dash.js and used the
“moof” parsing method for throughput calculation.The network la-
tency to the media server LN (𝑡) is measured in the backend server
as shown in Figure 1 and Figure 5 and queried by dash.js clients
through REST APIs. We set the maxDrift to 5s and playbackRate
to 0.17. For Dynamic and L2A-LL algorithms, we set the catch-up
mechanism to the Default, while LoL+ and our proposed algorithm
have their distinct catch-up mechanisms. As our proposed ABR al-
gorithm takes advantage of predictable satellite handover patterns,
we only evaluated its performance in network emulation settings
and real Starlink networks, while the other three ABR algorithms
are also evaluated in the terrestrial network setting as the control
group. The exploration rate of LinTS is set to 1.0.

From Figure 6(a) to Figure 6(c), we can see all ABR algorithms
show the same trend in increasing the average bitrate as the la-
tency target increases, with the exception that L2A-LL shows a
slight fluctuation in average bitrate in the emulation setting in Fig-
ure 6(a). In Figure 6(c), both L2A-LL and Dynamic maintain the
highest average bitrate while the average bitrate of LoL+maintains
at around 5100 Kbps for all the latency targets. In Figure 6(a) and
Figure 6(b), both Dynamic and LoL+ algorithms show significant

fluctuations in average bitrate at different latency targets, espe-
cially when the latency target is below 4 seconds. On the other
hand, the proposed CMAB-based ABR algorithm can always main-
tain a high average bitrate at different latency targets in both net-
work emulation and real Starlink networks.

Figure 6(d) to Figure 6(f) shows the average live latency in all
three network settings. In Figure 6(d), all ABR algorithms cannot
reach the latency target with at least 1 second deviation.Thismight
caused by the extreme network profile with a 3-second handover
period in the network emulation setting. The Dynamic algorithm
has the lowest average live latency, while our proposed CMAB-
based ABR algorithm has the highest average live latency. How-
ever, in Figure 6(e) and Figure 6(f), all ABR algorithms have similar
performance close to the latency target. Specifically, the proposed
algorithm can achieve lower live latency than the expected latency
target in Figure 6(e), when the latency target is larger than 4 sec-
onds.

Figure 6(g) to Figure 6(i) show the ratio of rebuffering events in
all three network settings. In Figure 6(g), all ABR algorithms have
a decreasing rebuffering time ratio as the latency target increases.
In the real Starlink network settings, the proposed algorithm can
achieve a low rebuffering time ratio close to L2A-LL as shown in
Figure 6(h).

Figure 6(j) to Figure 6(l) shows the number of bitrate switches
in all three network settings. L2A-LL has the least number of bi-
trate switches across different latency targets. Both Dynamic and
LoL+ show a similar decreasing trend in the number of bitrate
switches as the latency target increases. Our proposed algorithm



MMSys’24, April 15–18, 2024, Bari, Italy Jinwei Zhao and Jianping Pan

0 100 200
Throughput (Mbps)

0.0

0.5

1.0

CD
F

With ISL
Without ISL

(a) Downlink throughput CDF

0 20 40 60
Throughput (Mbps)

0.0

0.5

1.0

CD
F

With ISL
Without ISL

(b) Uplink throughput CDF

Figure 9: CDF of throughputs

has a generally higher number of bitrate switches than other ABR
algorithms, especially in Figure 6(j). However, Figure 7 shows that
our proposed algorithm has the lowest bitrate standard deviation.
This suggests that shifts in playback quality under the proposed
algorithm bring less visual impact to users compared with other
ABR algorithms. However, this implication should be further veri-
fied by other visual quality assessment methods such as VMAF in
the future.

Figure 8 demonstrates the significance of considering satellite
handover awareness when designing an ABR algorithm for LLL
video streaming over satellite networks. It shows the actual play-
back speed and live latency during one playback session using the
Dynamic ABR algorithmwith a 3-second latency target.The figure
shows that at 07:35:57, the satellite handover event happens. How-
ever, the algorithm made a decision to increase playback speed,
which resulted in a significant increase in live latency.

6 DISCUSSION
In this paper, we mainly focused on measuring the performance of
Starlink access network and low latency ABR algorithms in one-
way live video streaming scenarios frommedia servers to end users.
However, there are still many open research challenges left to be
explored in the future.

6.1 Video Ingestion Performance on the Uplink
As the popularity of live broadcasting and short video-sharing plat-
forms such as Twitch and TikTok grows, the video ingest perfor-
mance on the uplink is also becoming more important. However,
the uplink performance of Starlink networks is significantly sub-
par compared to the downlink performance. As shown in Figure 9,
the uplink throughput is significantly lower than the downlink
throughput with very high fluctuations. Similar to Section 3.2, it
is important to note that the utilization of ISL does not directly
impact throughput performance. Instead, it is influenced by Star-
link’s capacity limitations in different geographical regions. In con-
trast to the “pull”-based model of live streaming on the downlink
path, live broadcastingworkflow involves streaming software such
as OBS and uses RTMP/HLS/DASH to ingest video streams to the
service provider’s servers using a “push”-based model. In this case,
the video ingestion clients can better utilize the predictable satel-
lite handover patterns to dynamically adjust the video bitrate and
sending rate to avoid potential bufferbloat and improve the video
ingestion performance.

6.2 Other Research Challenges
With the widespread deployment of Starlink and other LEO satel-
lite constellations, the dynamic nature of LEO satellite networks
poses challenges to the traditional CDN architecture for media
delivery. Given the inherent mobility of LEO satellites, the con-
ventional paradigms of “local” or “edge” computing are being re-
defined, leaving issues such as resource allocation, storage, and
caching as open areas for exploration.

As discussed in Section 3.2, the TCP performance over Starlink
is significantly affected by the slow start pattern as satellite han-
dover events happen every 15 seconds. Other congestion control
algorithms, such as BBR, BBRv2, and HyStart++, may yield better
TCP throughput performance when compared to Cubic on Star-
link networks. On the other hand, QUIC, as the next-generation
transport-layer protocol, is designed with 1-RTT connection estab-
lishment and 0-RTT connection resumption, which can potentially
significantly reduce the impact of satellite handover events on TCP
performance and therefore improve upper-layer application per-
formance such as live video streaming.

The performance of demanding applications such as cloud gam-
ing over LEO satellite networks remains an area requiring com-
prehensive investigation. Essentially, cloud gaming is interactive
ultra-low latency live video streaming. Latency-sensitive scenar-
ios, especially in games like first-person shooters, are particularly
vulnerable to fluctuating latency and frequent satellite handovers,
given they also encompass human interactions via Starlink’s up-
link channels.

7 CONCLUSION
In this paper, we conducted a thorough measurement study on the
Starlink access network at multiple geographical Starlink installa-
tions, across different protocol layers from access latency and raw
TCP throughput to application-layer LLL video streaming perfor-
mances. Then, we proposed a novel ABR algorithm for LLL video
streaming, tailored for Starlink satellite networks. The proposed
algorithm utilized CMAB algorithms, with a novel reward func-
tion and catch-up policy considering satellite handover patterns.
We implemented an end-to-end prototype of the proposed algo-
rithm in dash.js and the performance evaluation was conducted
on both a purpose-built network emulation testbed and real Star-
link networks. The results illustrated that the proposed algorithm
can achieve LLL video streaming with high video bitrate, low play-
back latency, low rebuffering ratio and less visual quality fluctu-
ation. For future works, VMAF can also be used to evaluate the
visual quality fluctuation of different ABR algorithms in LLL video
streaming. The network emulation testbed can use trace-driven
methodology to conductmore realistic emulations. Utilizing CMAF
chunked encoding and chunked transfer over Starlink networks
could further enhance the live streaming latency and QoE. More
work can be done to improve the catch-up policy and reward func-
tion with more detailed analyses of satellite handover patterns and
present theoretical regret-bound analysis for the CMAB-based al-
gorithm. It is also worth investigating the performance of exist-
ing LLL video streaming ABR algorithms with satellite handover
awareness and the performance of uplink video streaming over ISL-
enabled Starlink networks.



Low Latency Live Video Streaming over a Low-Earth-Orbit Satellite Network with DASH MMSys’24, April 15–18, 2024, Bari, Italy

REFERENCES
[1] Shipra Agrawal and Navin Goyal. 2013. Thompson Sampling for Contextual

Bandits with Linear Payoffs. In Proceedings of the 30th International Confer-
ence on Machine Learning. PMLR, 127–135. https://proceedings.mlr.press/v28/
agrawal13.html

[2] Abdelhak Bentaleb, Mehmet N. Akcay, May Lim, Ali C. Begen, and Roger Zim-
mermann. 2022. Catching the Moment With LoL⁺ in Twitch-Like Low-Latency
Live Streaming Platforms. IEEE Transactions onMultimedia 24 (2022), 2300–2314.
https://doi.org/10.1109/TMM.2021.3079288

[3] Rodrigo Blázquez-García, Diego Cristallini, Martin Ummenhofer, Viktor Seidel,
Jörg Heckenbach, and Daniel O’Hagan. 2023. Experimental Comparison of
Starlink and OneWeb Signals for Passive Radar. In 2023 IEEE Radar Conference
(RadarConf23). 1–6. https://doi.org/10.1109/RadarConf2351548.2023.10149580

[4] CTA. 2023. CTA The Wave Project: Web Application Video Ecosystem Interoper-
ability Project. https://github.com/cta-wave/Test-Content

[5] DASH-Industry-Forum. 2023. DASH-Industry-Forum/dash.js. https://github.
com/Dash-Industry-Forum/dash.js

[6] DASH-Industry-Forum. 2023. DASH-Industry-Forum/livesim2. https://github.
com/Dash-Industry-Forum/livesim2

[7] The Pyodide development team. 2023. Pyodide. https://doi.org/10.5281/zenodo.
8123342

[8] Jayasuryan V. Iyer, Khasim Shaheed Shaik Mahammad, Yashodhan Dandekar,
Ramakrishna Akella, Chen Chen, Phillip E. Barber, and Peter J. Worters. 2022.
System and Method of Providing a Medium Access Control Scheduler. https://
patents.google.com/patent/US11540301B1/en

[9] Theo Karagkioules, Rufael Mekuria, Dirk Griffioen, and Arjen Wagenaar. 2020.
Online learning for low-latency adaptive streaming. In Proceedings of the 11th
ACM Multimedia Systems Conference (MMSys ’20). Association for Computing
Machinery, New York, NY, USA, 315–320. https://doi.org/10.1145/3339825.
3397042

[10] Debopam Bhattacherjee Kassem, Mohamed. 2023. LEOCONN Webinar Series.
https://leoconnws.github.io/

[11] Jiajia Liu, Yongpeng Shi, Zubair Md. Fadlullah, and Nei Kato. 2018. Space-Air-
Ground Integrated Network: A Survey. IEEE Communications Surveys & Tutori-
als 20, 4 (2018), 2714–2741. https://doi.org/10.1109/COMST.2018.2841996

[12] Owens Nathan. 2023. Unoffical Starlink Global Gateways & PoPs. Re-
trieved September, 2023 from https://www.google.com/maps/d/viewer?mid=
1805q6rlePY4WZd8QMOaNe2BqAgFkYBY

[13] Piers O’Hanlon and Adil Aslam. 2023. Latency Target based Analysis of the
DASH.js Player. In Proceedings of the 14th Conference on ACM Multimedia Sys-
tems (MMSys ’23). Association for Computing Machinery, New York, NY, USA,
153–160. https://doi.org/10.1145/3587819.3590971

[14] Jianping Pan, Jinwei Zhao, and Lin Cai. 2023. Measuring a Low-Earth-Orbit
Satellite Network. arXiv:2307.06863 [cs.NI]

[15] Werner Robitza, Steve Göring, Alexander Raake, David Lindegren, Gunnar
Heikkilä, Jörgen Gustafsson, Peter List, Bernhard Feiten, Ulf Wüstenhagen,
Marie-Neige Garcia, Kazuhisa Yamagishi, and Simon Broom. 2018. HTTP Adap-
tive Streaming QoE Estimation with ITU-T Rec. P. 1203 - Open Databases and
Software. In Proceedings of the 9th ACM Multimedia Systems Conference (MM-
Sys ’18). Association for Computing Machinery, New York, NY, USA, 466–471.
https://doi.org/10.1145/3204949.3208124

[16] Crist Ry and Paul Trey. 2023. Starlink Internet Explained. Re-
trieved June, 2023 from https://www.cnet.com/home/internet/starlink-satellite-
internet-explained/

[17] SpaceX. 2023. Starlink. https://www.starlink.com
[18] Kevin Spiteri, Ramesh Sitaraman, and Daniel Sparacio. 2019. From Theory to

Practice: Improving Bitrate Adaptation in the DASH Reference Player. ACM
Transactions on Multimedia Computing, Communications, and Applications 15,
2s (July 2019), 67:1–67:29. https://doi.org/10.1145/3336497

[19] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K. Sitaraman. 2020. BOLA: Near-
Optimal Bitrate Adaptation for Online Videos. IEEE/ACM Transactions on
Networking 28, 4 (Aug. 2020), 1698–1711. https://doi.org/10.1109/TNET.2020.
2996964

[20] Emily Strong, Bernard Kleynhans, and Serdar Kadioglu. 2021. MABWISER:
Parallelizable Contextual Multi-armed Bandits. International Journal on Arti-
ficial Intelligence Tools 30, 04 (June 2021), 2150021. https://doi.org/10.1142/
S0218213021500214

[21] Hammas Bin Tanveer, Mike Puchol, Rachee Singh, Antonio Bianchi, and Rishab
Nithyanand. 2023. Making Sense of Constellations: Methodologies for Under-
standing Starlink’s Scheduling Algorithms. arXiv:2307.00402 [cs.NI]

[22] YufeiWang, Lin Cai, and Jun Liu. 2023. High-Reliability, Low-Latency, and Load-
Balancing Multipath Routing for LEO Satellite Networks. In 2023 Biennial Sym-
posium on Communications (BSC). 107–111. https://doi.org/10.1109/BSC57238.
2023.10201829

[23] Haoyuan Zhao, Hao Fang, Feng Wang, and Jiangchuan Liu. 2023. Realtime Mul-
timedia Services over Starlink: A Reality Check. In Proceedings of the 33rd Work-
shop on Network and Operating System Support for Digital Audio and Video (NOSS-
DAV ’23). Association for Computing Machinery, New York, NY, USA, 43–49.
https://doi.org/10.1145/3592473.3592562

https://proceedings.mlr.press/v28/agrawal13.html
https://proceedings.mlr.press/v28/agrawal13.html
https://doi.org/10.1109/TMM.2021.3079288
https://doi.org/10.1109/RadarConf2351548.2023.10149580
https://github.com/cta-wave/Test-Content
https://github.com/Dash-Industry-Forum/dash.js
https://github.com/Dash-Industry-Forum/dash.js
https://github.com/Dash-Industry-Forum/livesim2
https://github.com/Dash-Industry-Forum/livesim2
https://doi.org/10.5281/zenodo.8123342
https://doi.org/10.5281/zenodo.8123342
https://patents.google.com/patent/US11540301B1/en
https://patents.google.com/patent/US11540301B1/en
https://doi.org/10.1145/3339825.3397042
https://doi.org/10.1145/3339825.3397042
https://leoconnws.github.io/
https://doi.org/10.1109/COMST.2018.2841996
https://www.google.com/maps/d/viewer?mid=1805q6rlePY4WZd8QMOaNe2BqAgFkYBY
https://www.google.com/maps/d/viewer?mid=1805q6rlePY4WZd8QMOaNe2BqAgFkYBY
https://doi.org/10.1145/3587819.3590971
https://arxiv.org/abs/2307.06863
https://doi.org/10.1145/3204949.3208124
https://www.cnet.com/home/internet/starlink-satellite-internet-explained/
https://www.cnet.com/home/internet/starlink-satellite-internet-explained/
https://www.starlink.com
https://doi.org/10.1145/3336497
https://doi.org/10.1109/TNET.2020.2996964
https://doi.org/10.1109/TNET.2020.2996964
https://doi.org/10.1142/S0218213021500214
https://doi.org/10.1142/S0218213021500214
https://arxiv.org/abs/2307.00402
https://doi.org/10.1109/BSC57238.2023.10201829
https://doi.org/10.1109/BSC57238.2023.10201829
https://doi.org/10.1145/3592473.3592562

	Abstract
	1 Introduction
	2 Related Works
	2.1 LLL Video Streaming in DASH
	2.2 Starlink

	3 Measurement
	3.1 Setup
	3.2 Measuring Starlink Access Network
	3.3 Measuring LLL Video Streaming

	4 Problem Formulation
	4.1 System Model
	4.2 Reward Function Design
	4.3 Catch-up Policy

	5 Evaluation
	6 Discussion
	6.1 Video Ingestion Performance on the Uplink
	6.2 Other Research Challenges

	7 Conclusion
	References

